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ABSTRACT: Fibrils of amyloid proteins are currently of great
interest because of their involvement in various amyloid-related
diseases and nanotechnological products. In a recent kinetic Monte
Carlo simulation study (Cabriolu, R.; Kashchiev, D.; Auer, S. J. Chem.
Phys. 2012, 137, 204903), we found that our simulation data for the
rate of amyloid fibril nucleation occurring by direct polymerization of
monomeric protein could not be described adequately by nucleation
theory. It turned out that the process occurred in a peculiar way, thus
confounding the nucleation paradigm and demanding a new
theoretical treatment. In the present study, we reconsider the
theoretical approach to nucleation of amyloid fibrils and derive new
expressions for the stationary rate of the process. As these expressions
provide a remarkably good description of the simulation data, by
using them we propose a theoretical dependence of the amyloid-β40 fibril nucleation rate on the concentration of monomeric
protein in the solution. This dependence reveals the existence of a threshold concentration below which the fibril nucleation in
small enough solution volumes is practically arrested, and above which the process occurs vigorously, because then each
monomeric protein in the solution acts as fibril nucleus. The presented expressions for the threshold concentration and for the
dependence of the fibril nucleation rate on the concentration of monomeric protein can be a valuable guide in designing new
therapeutic and/or technological strategies for prevention or stimulation of amyloid fibril formation.

■ INTRODUCTION

Amyloid fibrils are involved in dozens of amyloid-related
diseases such as Alzheimer’s, Parkinson’s, type II diabetes, and
cataract.1 The nucleation of such fibrils refers to the process of
random generation of those nanoscale fibrils (or protofila-
ments) that have the ability of irreversible growth. Unless the
nanofibril size exceeds the size n* of the fibril nucleus, the
nanofibril is more likely to dissolve than to grow (n* is the
number of protein monomers in the fibril nucleus, known also
as critical nucleus, which is that particular nanofibril that
requires maximum work for its formation). As only a fibril
supernucleus, i.e., a nanofibril bigger than the fibril nucleus, can
grow irreversibly into a macroscale amyloid fibril, the fibril
nucleation rate J is defined as the number of fibril supernuclei
that form per unit time and per unit volume of the protein
solution. Finding J is a central problem in nucleation of amyloid
fibrils, because J has a strong impact on many important
quantities, such as the fibril size distribution, the number of
fibrils formed, and the lag time of the fibrillation process. Also, J
is an indispensable ingredient in the set of rate equations
describing the overall kinetics of unseeded amyloid fibrillation
(e.g., refs 2−11).
In classical nucleation theory (CNT) (e.g., refs 12, 13), at a

given supersaturation the nucleus size n* has a unique value
obtainable from thermodynamic considerations about the work
gained from assembling n* monomers of the supersaturated
parent phase into the nucleus and the work spent on creating
the nucleus surface, periphery, or ends for three-dimensional

(3D), two-dimensional (2D), or one-dimensional (1D) nuclei,
respectively. The latter work scales as n*2/3 for 3D nuclei, as
n*1/2 for 2D nuclei, and is n*-independent for 1D nuclei.13 Due
to this independence, regardless of the supersaturation, n* = 1
for the appearance of 1D aggregates, the energy barrier to the
process is nil, and, for that reason, 1D nucleation does not exist
(ref 13, p 42). Hence, nucleation cannot be a process involved
in the formation of amyloid fibrils if they are strictly 1D
aggregates. Contrary to that, however, numerous experiments
provide evidence for nucleation-mediated formation of the
amyloid fibrils. This evidence can be accommodated within
CNT when the amyloid fibril nucleus is treated as a 2D
aggregate, because then n* ≥ 1 and there exists an energy
barrier to nucleation. Yet, considering the amyloid fibril nucleus
as a 2D aggregate is not entirely justified, because the amyloid
fibrils are more prone to grow in one dimension (i.e., to
elongate) than in two dimensions (i.e., to simultaneously
elongate and thicken). Thus, as the amyloid fibril nuclei are
actually aggregates with ambiguous dimensionality, the work
done on creating the nucleus/solution interface does not scale
in a definite way with the nucleus size. As a consequence, at a
given supersaturation the size n* of the fibril nucleus does not
have a unique value and amyloid nanofibrils of different size
and shape can act as fibril nuclei. This peculiarity of the amyloid
fibril nucleation makes it impossible for the process to be fully
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described by CNT or related nucleation theories which we shall
collectively call the standard nucleation theory.
At a fixed temperature, the nucleation rate J can be varied by

changing the concentration C1 of monomeric protein in the
solution. Building on concepts from CNT,12,13 various
expressions for the J(C1) dependence have been proposed
and used in the literature (e.g., refs 2−11 and 14−16), but they
can be unitedly represented by the formula J = aC1

b. While the
factor a depends on several quantities among which the
frequency of attachment of monomeric protein to the
nanofibrils, the power b (a positive number) is only related
to the nucleus size n*. For example, b = n* − 1 (ref 14) or b =
n* (refs 7−9) or b = n* + 1 (refs 2−6, 10, 15, 16). The
different theories consider the factor a as C1-dependent or
independent. Similarly, the power b is treated as changing or
fixed when C1 is varied. What is important for the present
study, however, is that according to all theories ln J is a
concavely or linearly increasing function of ln C1. The latter is
readily seen from the above J(C1) formula at C1-independent a
and b.
It seems that, hitherto, there has been no quantitative

verification of theoretical J(C1) dependences with the help of
directly obtained experimental J(C1) data for amyloid fibrils. A
major reason for that are the considerable experimental
difficulties in the direct determination of J as a function of
C1. Information about the change of J with C1 is usually
obtained only indirectly from the effect of C1 on the initial
course of the fibrillation progress curve or on the lag time of the
overall process of fibrillation. In such a situation, computer
simulations prove very useful in gaining insight into various
aspects of the nucleation of amyloid fibrils. Recently,17 by
means of kinetic Monte Carlo simulations, we have directly
obtained J(s) data for nucleation of crystals with strongly
anisotropic interactions between molecules (s is the dimension-
less supersaturation of the nucleating system). These data in
fact represent the J(s) dependence for nucleation of amyloid
fibrils with solubility Ce when the process occurs by direct
polymerization of practically fully extended protein segments,
i.e., β-strands, because then s is given by s = ln(C1/Ce) and
because the fibrils can be modeled as crystal-like aggregates of
β-strands with strong hydrogen bonds along the fibril
elongation axis and weak hydrophobicity-mediated bonds
perpendicular to this axis.15 Surprisingly, our simulations17

revealed that at the strong interaction anisotropy that
characterizes amyloid fibrils the dependence of ln J on s (i.e.,
on C1) is steplike, with sharp jumps at certain s values. Such a
change of J with s (or C1) is paradoxical from the viewpoint of
CNT12,13 and impossible to describe by the J(C1) formula
given above. This behavior of J is thus a clear sign that the
nucleation of amyloid fibrils is a peculiar kind of nucleation, not
entirely complying with the paradigm of standard nucleation
theory.
Evidently, our finding that ln J is a steplike function of s in

nucleation of amyloid fibrils calls for a reconsideration of the
theoretical description of amyloid fibril nucleation presented
elsewhere.15,16 This reconsideration and the derivation of a J(s)
formula describing our simulation J(s) data are the objective of
the present study. The results obtained are applicable to
homogeneous nucleation which occurs when the protein
solution is free of foreign nucleation-active particles or is
sufficiently strongly supersaturated.

■ RESULTS
Concentration Ranges. Both theoretical considerations15

and a computer-simulated peptide solubility diagram18,19 reveal
that for the irreversible elongation of differently thick amyloid
fibrils thermodynamics requires different ranges of the
concentration C1 of monomeric β-strands (peptides or protein
segments) in the solution. Figure 1 illustrates schematically

these ranges at a fixed absolute temperature T at which the β-
strands are in practically fully extended conformation. These
ranges are limited by the equilibrium concentration (or
solubility) Ce of the bulk fibrillar phase and the increasingly
higher equilibrium concentrations (or solubilities) C1β, C2β, C3β,
etc., of the fibrils constituted of one, two, three, etc., equally
long β-sheets, respectively (these fibrils are the so-called iβ-
sheets15,18). The solubilities are merely the C1 values at which
the respective iβ-sheets neither lengthen nor dissolve. The iβ-
sheet solubility Ciβ is related to Ce by the expression

15 (i = 1, 2,
3, ...)

=β
σC C ei e

d d ikT2 /h h0
(1)

where d0 is the length of a β-strand in the β-sheet, i.e., the β-
sheet width (Figure 1), dh is the distance occupied by a β-strand
along a β-sheet (Figure 1), σh (J/m2) is the specific surface
energy of the β-sheet sides, i is the number of β-sheets in the iβ-
sheet, and k is the Boltzmann constant. For example, for the
amyloid-β40 (Aβ40) protein d0 ≈ 5 nm (ref 20), dh ≈ 0.5 nm
(ref 20), and σh ≈ 2.6 J/m2 (estimated value21).
As indicated in Figure 1, the C1 > C1β range (range i = 0 in

the figure) corresponds to metanucleation,15 a process of fibril
formation without energy barrier, because then each protein
monomer (i.e., single β-strand) in the solution acts as fibril
nucleus: attachment of another monomer to it allows
irreversible elongation of the so-formed 1β-sheet with length
of two β-strands. Similarly, when C1 > C2β, the 2β-sheets can
lengthen irreversibly. Importantly, however, in the C2β < C1 <
C1β range (range i = 1 in Figure 1), the 1β-sheets tend to
dissolve and their appearance is due to fluctuations. In this
range the fibril nucleus is a 1β-sheet plus one β-strand attached
to one of the two 1β-sheet sides so that a fibril prenucleus is
any of the randomly formed, different length 1β-sheets in the
solution (see Figure 1). The situation is analogous with the 3β-
sheets when C1 > C3β, because then these sheets can elongate

Figure 1. Protein concentration ranges in which the protein solution is
in stable (0 ≤ C1 ≤ Ce) or metastable (C1 > Ce) thermodynamic
equilibrium at a given temperature. In the metanucleation range (i =
0) the nucleus is a single β-strand. In the first (i = 1) and the second (i
= 2) nucleation ranges the nucleus is a 1β- or 2β-sheet, respectively,
with one β-strand attached sidewise.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja311228d | J. Am. Chem. Soc. 2013, 135, 1531−15391532



irreversibly. However, in the C3β < C1 < C2β range (range i = 2
in Figure 1), the 2β-sheets are subject to dissolution and can
only appear by fluctuations. Hence, in this range the fibril
nucleus is a 2β-sheet with one β-strand attached sidewise, and
the respective prenucleus is a 2β-sheet of any length (Figure 1).
The general rule is, therefore, that in the ith supersaturation

range, defined by (i = 0, 1, 2, ...)

ψ+ < <i s i2/( 1) / 2/h (2)

all different length iβ-sheets are fibril prenuclei, and these sheets
plus one β-strand attached to one of their two sides are the
nuclei of the (i + 1)β-sheet-thick fibrils that can lengthen
irreversibly. With i = 0, inequality 2 is the condition for
metanucleation: then prenuclei (0β-sheets) do not exist, and
the single β-strands are the fibril nuclei. Thus, i = 0 and i ≥ 1
correspond to fibril metanucleation and nucleation, respec-
tively. Inequality 2 is obtained by using eq 1 to replace Ciβ by
Ce, and in it the dimensionless supersaturation s and the
dimensionless specific surface energy ψh of the β-sheet sides are
given by15,16

=s C Cln( / )e1 (3)

ψ σ= =d d kT E kT/ /2h h h h0 (4)

The second equality in eq 4 results from using the approximate
relation16 σh = Eh/2d0dh between σh and the weak (hydro-
phobicity-mediated) binding energy Eh of two nearest-neighbor
β-strands positioned in adjacent β-sheets.
Nucleation Work. For the analysis to follow, it is necessary

to know the workW(i, n) to form an n-sized nanofibril which at
a given transition size nt changes its shape from that of iβ-sheet
to that of iβ-sheet with a partially or fully built-up subsequent
β-sheet on one of its two sides. Let the number n of β-strands
constituting the nanofibril be in the range 1 ≤ n ≤ nt + mt,
where mt = nt/i is the nanofibril transition length (mt is the
number of β-strands in any of the i equally long β-sheets
constituting the iβ-sheet-shaped nanofibril when the first β-
strand of the subsequent β-sheet is attached to the nanofibril).
Then the dimensionless work w for nanofibril formation can be
written down as (i = 1, 2, 3, ...)

ψ ψ= − − +w i n s i n i( , ) ( 2 / ) 2h (5)

for n = 1, 2, ..., nt (ref 15) and as

ψ ψ= − + + +w i n sn m i( , ) 2 2 ( 1)h t (6)

for n = nt + 1, nt + 2, ..., nt + mt. Here, w(i,n) ≡ W(i,n)/kT and
the dimensionless specific surface energy ψ of the iβ-sheet ends
is given by15,16

ψ σ= =d d kT E kT/ /20 (7)

In this expression d is the thickness of a single β-sheet (Figure
1), σ (J/m2) is the dimensional specific surface energy of the iβ-
sheet ends, and E is the energy of the strong (primarily
hydrogen) bond between two nearest-neighbor β-strands in a
β-sheet (the second equality in eq 7 follows from using the
approximate relation16 σ = E/2d0d between σ and E). The
amyloid fibrils are characterized by the inequality E ≫ Eh and,
hence, σ ≫ σh and ψ ≫ ψh, because the d and dh values are not
too different. For example, for the Aβ40 protein d ≈ 1 nm (ref
20) and σ ≈ 18 J/m2 (estimated value21), so that with these
values and the d0, dh, and σh values given above, it follows from

eqs 4 and 7 that ψ = 21, ψh = 1.5, and ψ/ψh = 14 for this
protein at T = 310 K.
In eqs 5 and 6, the term −sn is the energy gained by

assembling n monomers from the solution into an n-sized
nanofibril, and the ψh and ψ terms represent the work done on
creating the total surface area of a nanofibril with the shape of
iβ-sheet without (eq 5) or with (eq 6) a subsequent β-sheet on
one of the iβ-sheet sides. The solid line 12 in Figure 2 displays

the n dependence of w from eqs 5 and 6 for a single β-sheet (i =
1) which reaches exemplifying transition size nt = 12 and length
mt = 12 and polymerizes mt = 12 more monomers as a second
β-sheet on one of its sides. The line is drawn with ψ = 10ψh and
s = 1.5ψh. The s value is chosen in the middle of the
supersaturation range defined by inequality 2 with i = 1 (range i
= 1 in Figure 1) where the 1β-sheets are fibril prenuclei. As
seen in Figure 2, w increases linearly with the 1β-sheet size or,
equivalently, length until the sheet becomes nt = mt = 12
monomers long. Importantly, as visualized by the dotted line in
Figure 2, w would keep increasing in the same way if the 1β-
sheet would continue lengthening (cf. eq 5). This means that at
the chosen s = 1.5ψh and, more generally, in the whole
supersaturation range ψh < s < 2ψh (range i = 1 in Figure 1),
none of the differently long 1β-sheets is thermodynamically
competent to lengthen unlimitedly. Any of the 1β-sheets can do
that only after randomly attaching sidewise one monomer and
thus transforming itself into a (1β + 1)-shaped nanofibril, i.e., a
1β-sheet plus one β-strand on it. This event corresponds to a
sharp increase of w, manifested by the jump in the solid line 12
in Figure 2 between n = 12 and 13. With this costly shape-
transformation work done, thermodynamics allows the
reshaped nanofibril to grow irreversibly, because w then
diminishes linearly with n up to n = nt + mt = 24 (cf. eq 6).
At this size, the nanofibril is already a 2β-sheet and can elongate
unlimitedly, because at s = 1.5ψh the work w(2, n) for 2β-sheet
formation also decreases with n (see the dashed line in Figure 2,
which is drawn according to eq 5 with i = 2).
Figure 2 reveals that, in general, the (iβ + 1)-shaped

nanofibril of size n* = nt + 1 requires maximum work for its
formation, which is why, as in standard nucleation theory,12,13

this nanofibril is the nucleus of the fibrillar phase appearing in
the protein solution. Unlike in this theory, however, the fibril
nucleus does not have a uniquely specified size n* diminishing

Figure 2. Work w for fibril formation as a function of the nanofibril
size n at ψ = 10ψh and s = 1.5ψh: lines 5 and 12, eqs 5 and 6 for
nanofibrils with transition size nt = 5 and 12, respectively; line 1β, eq 5
at i = 1; line 2β, eq 5 at i = 2. In addition to nt, the nucleus size n* and
the nucleation work w* are indicated, and successive nanofibril shapes
are schematically shown to visualize the nanofibril transition from 1β-
to 2β-sheet (the smallest rectangle represents a single β-strand).
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continuously15 or stepwise16 with increasing supersaturation.
Instead, any (iβ + 1)-shaped, (nt + 1)-sized nanofibril can be a
nucleus, merely because any iβ-sheet is able to attach a
monomer to its side, acting thereby as a prenucleus of arbitrary
length mt and size nt = imt if s is in the ith supersaturation range
determined by inequality 2. The possibility for different fibril
prenucleus and nucleus sizes is illustrated in Figure 2 in which
the solid line 5 exhibits w from eqs 5 and 6 at the above s, ψ,
and i values, but at transition size nt = 5. Then the prenucleus is
1β-sheet of length mt = nt = 5 and the (1β + 1)-shaped, 6-sized
nanofibril is the nucleus because of its energetically most costly
formation. As seen in Figure 2, the dimensionless nucleation
work w* ≡ w(i, n*) is smaller for the nucleus of size n* = nt + 1
= 6 than for the nucleus of size n* = nt + 1 = 13. This means
that thermodynamics favors the formation of shorter and,
thereby, smaller fibril nuclei. It thus acts against the appearance
of bigger nuclei, a process due to the fact that the respective
prenuclei are longer and offer more monomer attachment sites
on their sides. As a result, as shown below, at some
intermediate transition length the fibril nuclei in the solution
prove to be most numerous.
Setting n = n* and using n* = nt + 1 = imt + 1 in eq 6, we

readily arrive at the following general formula for w* in the ith s
range in which all different length (iβ + 1)-shaped nanofibrils
are fibril nuclei (i = 1, 2, 3, ...; mt = 1, 2, 3, ...; 2/(i + 1) < s/ψh <
2/i):

ψ ψ* = − − + +w is m s i(2 ) 2( 1)h t (8)

As seen, w* diminishes linearly with increasing s and, due to the
above relation between n* and mt, it obeys the nucleation
theorem of standard nucleation theory in the form13,22,23 dw*/
ds = −n*.
Concentration and Length Distribution of Nuclei.

Using eq 8, we can determine the equilibrium concentration
Cmt
* of nuclei in the ith s range in which they are mt-long iβ-

sheets with one monomer attached sidewise. According to
CNT in its self-consistent formulation,13 Cmt

* and w* are related

by the Boltzmann-type formula Cmt
* = C1e

w(1,1)−w*, where w(1,1)
is the dimensionless work for monomer formation (the
monomer is formally considered as the smallest nanofibril of
one β-strand). As this formula is of general statistical character
and as from eq 5 we have w(1, 1) = −s + 2ψh + 2ψ, upon
employing w* from eq 8, we obtain (i = 1, 2, 3, ...; mt = 1, 2, 3,
...; 2/(i + 1) < s/ψh < 2/i)

* = ψ ψ ψ− − +C m C2 em t
is m i

1
( 2 ) 2 2

t
h t h (9)

The factor 2mt in this expression is introduced to take into
account that a nucleus stemming from an mt-long prenucleus
appears in 2mt energetically equivalent configurations corre-
sponding to the 2mt monomer attachment sites on the two
sides of the prenucleus.
Equation 9 represents the length distribution of nuclei in the

ith s range: it gives the concentration of nuclei with length of mt
β-strands (all these nuclei have the same number i of β-sheets).
While the pre-exponential factor in this equation increases with
increasing mt, the exponential factor diminishes. As a result, Cmt

*
passes through a maximum at mt = mmax* . This is seen in Figure
3 which displays Cmt

* from eq 9 at ψh = 1, ψ = 10, and s = 1.5 or
1.7 (as indicated). The length mmax* of the most numerous

nuclei, their size nmax* = immax* + 1, and their concentration Cmax*
 Cmmax** are given by (i = 1, 2, 3, ...; 2/(i + 1) < s/ψh < 2/i)

ψ* = −m is1/(2 )hmax (10)

ψ* = − +n i is[ /(2 )] 1hmax (11)

ψ* = − ψ ψ− − −C C is[2 /(2 )]eh
i

max 1
2( ) 1h (12)

Equations 10 and 12 follow from eq 9 and the condition for
maximum of Cmt

* , namely dCmt
*/dmt = 0 at mt = mmax* .

Exemplifying again the Aβ40 protein, with ψh = 1.5 and i = 1,
from eq 10 we find that when the supersaturation is in the
range in which the fibril nuclei are 1β-sheet-thick, the most
numerous of them are with length mmax* = 0.7, 3.3, and 6.7 β-
strands at s = ψh = 1.5, s = 1.8ψh = 2.7, and s = 1.9ψh = 2.85,
respectively. This result means that in the s range next to the
metanucleation one, the most numerous Aβ40 nuclei are of size
nmax* = mmax* + 1 = 2 to 8, except for s values quite close to that
of the metanucleation border (s = 2ψh = 3) when these nuclei
are already above a dozen or more β-strands in length and,
hence, size.
From eq 9, with the aid of the exact formula ∑p=1

∞pxp = x/(1
− x)2 related to the geometric series, it follows that in the ith s
range the total concentration C* = ∑mt = 1

∞ Cmt
* of nuclei of all

lengths is given by (i = 1, 2, 3, ...; 2/(i + 1) < s/ψh < 2/i)

* = −ψ ψ− −C C2 e /(1 e )i s is
1

( 2 ) 2 2h (13)

This important relation shows that, given the nucleus (and
prenucleus) thickness i, just like mmax* , nmax* , and Cmax* from eqs
10, 11, and 12, C* increases strongly with s and diverges at the
upper limit 2ψh/i of the ith s range specified by inequality 2.
This unphysical divergence is a mathematical expression of the
fact that beyond this limit, rather than being in equilibrium with
the solution, the iβ-sheets are thermodynamically allowed to
lengthen irreversibly (see Figure 1). We note as well that,
owing to the factor e−2iψ in eq 13, the nuclei in the ith s range
are many orders of magnitude more numerous than those in
the (i + 1)th s range. As will be seen below, this translates into a
stark quantitative difference between the fibril nucleation rates
in the different s ranges. Of all s ranges in which nucleation
occurs (for them i ≥ 1), the nucleation rate is highest when i =
1, which is why the s range with this i value will be called the
range of rapid nucleation.

Figure 3. Length distribution of fibril nuclei with thickness of one β-
sheet: lines 1.5 and 1.7, eq 9 at s = 1.5 and 1.7, respectively, i = 1, ψh =
1, and ψ = 10. The arrows indicate the corresponding values of mmax*
and mav* from eqs 10 and 14.
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Equation 9 makes it possible to determine the average length
mav* and size nav* = imav* + 1 of the (iβ + 1)-shaped nuclei in the
ith s range. As the average length is defined by mav*C* =
∑mt = 1

∞ mtCmt
* , using eqs 9and 13 and the exact formula ∑p=1

∞p2xp

= x(1 + x)/(1 − x)3 also related to the geometric series, we
obtain (i = 1, 2, 3, ...; 2/(i + 1) < s/ψh < 2/i)

* = + −ψ ψ− −m (1 e )/(1 e )is is
av

2 2h h (14)

* = + − +ψ ψ− −n i[ (1 e )/(1 e )] 1is is
av

2 2h h (15)

These expressions say that, similar to mmax* and nmax* , the average
nucleus length mav* and size nav* increase with s and diverge at the
upper limit 2ψh/i of the ith s range specified by inequality 2.
The values of mav* and nav* are about twice those of mmax* and
nmax* . Indeed, with i = 1 and the ψh value of 1.5 exemplifying the
Aβ40 protein, from eq 14 we find that, in the range of rapid
nucleation in which the fibril nuclei are 1β-sheet-thick, they are
with average length mav* = 1.6, 6.7, and 13.4 β-strands at s = ψh =
1.5, s = 1.8ψh = 2.7, and s = 1.9ψh = 2.85, respectively. Thus, in
the rapid-nucleation range the average size of the (1β + 1)-
shaped Aβ40 nuclei is nav* = mav* + 1 = 3 to 14, except for s values
close enough to that of the metanucleation border (s = 2ψh = 3)
when, on average, these nuclei are already more than a score of
β-strands in length and, hence, size. Worth nothing also is that
the average length and size of the fibril nuclei as well as the
length and size of the most numerous of them are independent
of ψ; i.e., they are invariants with respect to the energy of the
strong (primarily hydrogen) bonds between nearest-neighbor
β-strands in a β-sheet. As seen from eqs 10, 11, 14, and 15, at
given i and s, the values of all these quantities depend only on
ψh, i.e., they are dictated solely by the energy of the weak
(hydrophobicity-mediated) interstrand bonds that hold the β-
sheets together in a fibril.
Nucleation Rate. In line with standard nucleation

theory,12,13 the nucleation rate J (m−3 s−1) is the frequency
of appearance of supernucleus fibrils per unit solution volume.
The peculiarity that the fibril nuclei have different number i of
β-sheets in different s ranges (Figure 1) makes it difficult to
obtain a unified formula for the J(s) dependence at any s > 0.
Finding this dependence for a given s range specified by
inequality 2 is, however, quite straightforward, and one way of
doing that is described below.
Let us first determine J in the metanucleation range s > 2ψh

(range i = 0 in Figure 1) in which there is no energy barrier to
nucleation, because every monomer, i.e., single β-strand, in the
solution plays the role of fibril nucleus. Then J, which is more
correct to call the metanucleation rate, is merely the product of
the monomer concentration C1 and the net number f1 − g2 of
monomers that a given monomer, acting as nucleus, attaches
per unit time to its two strong-bond sides, i.e., (C1 > Cee

2ψh)

= −J f g C( )1 2 1 (16)

Here the monomer attachment frequency f1 = 2ka is twice
the frequency ka (s

−1) of monomer attachment to one of the
two strong-bond sides of a given monomer (Figure 4a).
Similarly, the monomer detachment frequency g2 = 2kd is twice
the frequency kd (s

−1) of monomer detachment from one of the
two ends of a dimer (Figure 4b). While ka is expected to
increase linearly with C according to15,17

= =k k C C k/ ea e e e
s

1 (17)

kd is C1-independent and can be represented as17

= =σ ψk k ke ed d kink
d d kT

e,
2 / 2h h h0 (18)

In eq 17, ke is the value of ka at equilibrium, i.e., at C1 = Ce or s
= 0, and in eq 18, kd,kink is the detachment frequency of a
monomer from a kink on the fibril surface (Figure 4d).
Importantly, kd,kink = ke, because the fibril/solution equilibrium
is maintained via monomer attachment and detachment to and
from kinks. As to the exponential factor in eq 18, it takes into
account that monomer detachment from a dimer (Figure 4b) is
energetically less costly and, hence, more frequent than that
from a kink (Figure 4d), because while in the former case only
the area 2d0d is created and the work 2d0dσ is done, in the latter
case the greater work 2d0dσ + 2d0dhσh is done on creating the
greater area 2d0d + 2d0dh.
Using now the above expressions for f1, g2, ka, and kd in eq 16,

we readily obtain the following general formula for the time-
independent (or stationary) fibril metanucleation rate (s >
2ψh):

= − ψ −J f C (1 e )s
1 1

2 h (19)

In experiments on protein aggregation at fixed temperature
T, according to eq 3, the supersaturation s can be controlled by
means of the monomer concentration C1. Then f1 = 2keC1/Ce
and the metanucleation rate from eq 19 is the following
function of C1 (C1 > Cee

2ψh)

= − −J C A C A C( ) (1 )1 1 1
2

2 1
1

(20)

the factors A1 and A2 being given by A1 = 2ke/Ce and A2 =
Cee

2ψh.
In the other experimentally important case of supersaturation

controlled by the temperature T at fixed C1, s is of the form
15

= −s L T T kTT( )/e e (21)

where L (in Joules) is the latent heat or enthalpy (per β-strand)
of fibril formation, Te − T > 0 is the undercooling, and Te is the
absolute equilibrium temperature, i.e., the T value at which the
bulk fibrillar phase and the solution with monomer
concentration C1 are in coexistence. Also, f1 can be expressed
as15 f1 = f 0e

−Ea/kT, where the virtually T-independent frequency
factor f 0 (s

−1) is proportional to C1, and Ea is the activation
energy for the monomer-to-monomer attachment schematized
in Figure 4a. Then, combining eqs 4, 19, and 21, we find that
the T-dependence of the stationary metanucleation rate is of
the form (T < Te − 2d0dhσhTe/L)

= −− −J T A A( ) e (1 e )E kT E kT
1

/
2

/a 0 (22)

Figure 4. Schematic illustration of the monomer attachment and
detachment frequencies ka, kd, and kd,kink. The pluses indicate the
nanofibril kink sites.
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where the energy E0 and the factors A1 and A2 are given by E0 =
L−2d0dhσh, A1 = f 0C1, and A2 = eL/kTe. Importantly, the above
J(T) dependence is in force provided that in the entire T range
studied the β-strands remain in the same extended con-
formation, because then all four parameters A1, A2, Ea, and E0 in
eq 22 can be treated as practically T-independent.
We now turn to the determination of the fibril nucleation

rate J at a given i ≥ 1 when all iβ-sheets are prenuclei, all (iβ +
1)-shaped nanofibrils are nuclei, and the supersaturation is in
the ith range specified by inequality 2 (cf. Figure 1). Then, in
analogy with the case of metanucleation, J is the product of the
total concentration C* of nuclei and the net number f* − g* of
monomers attached per unit time to the nucleus two kink sites
(indicated by the pluses in Figure 4c), i.e.

= * − * *J f g C( ) (23)

Here f* is the frequency of monomer attachment to the
nucleus two kink sites (Figure 4c), and g* is the frequency of
monomer detachment from the so-formed dimer on the
nucleus side (Figure 4d). As in CNT, we can consider the
attachment frequency f* as independent of the kind of the site
to which a monomer is attached. Within this approximation, we
can therefore set f* = f1 = 2ka, ka being given by eq 17.
Concerning the detachment frequency g*, however, following
CNT, it is necessary to take into account that this frequency
depends on the nucleus thickness, i.e., on the number i of β-
sheets constituting the nucleus. From Figure 4d, we see that
while the detachment frequency from the dimer on the 1β-
sheet side is kd,kink, the detachment frequency from the end of
the 1β-sheet is kd. Hence, as an effective detachment frequency
kd,ef f we can use the geometric average of kd,kink and kd, i.e., kd,ef f
= (kdkd,kink)

1/2. Generalizing this result for nuclei with thickness
of any number i ≥ 1 of β-sheets, we obtain kd,ef f =
(kdkd,kink

i )1/(i+1) so that employing kd = kee
2ψh and kd,kink = ke

yields kd,ef f = kee
2ψh/(i+1).

Taking now into account that g* = 2kd,ef f because of the
nucleus two ends, with the help of eqs 13, 17, 23 and the above
expressions for kd,ef f and f*, we arrive at the following general
formula for the stationary fibril nucleation rate in the ith s range
in which the nuclei are built-up of i = 1, 2, 3, ... β-sheets (2/(i +
1) < s/ψh < 2/i):

= −
−

ψ
ψ

ψ
−

+ −

−J f C2 e
1 e

(1 e )
i s

i s

is1 1
( 2 )

[2 /( 1)]

2 2

h

h (24)

As already noted, experimentally, it is of interest to have the
dependence of J on C1 at fixed T and the dependence of J on T
at fixed C1. In the former case, due to eq 3, eq 17 and the
relation f1 = 2ka, eq 24 leads to (i = 1, 2, 3, ...; Cee

2ψh/(i+1) < C1 <
Cee

2ψh/i)

=
−
−

+
−

J C A C
A C
A C

( )
1

(1 )
i

i1 1 1
2 2 1

1

3 1
2

(25)

where A1 = (4ke/Ce
i+1)e−2iψ, A2 = Cee

2ψh/(i+1), and A3 =
Ce

−ie−2ψh. In the latter case, as then f1 = f 0e
−Ea/kT, from eqs 4, 7,

21, and 24 it follows that (i = 1, 2, 3, ...; Te − 2d0dhσhTe/iL < T
< Te − 2d0dhσhTe/(i + 1)L)

=
−
−

−
−

J T A e
A e
A e

( )
1

(1 )
E kT

E kT

E kT1
/ 2

/

3
/ 2

1
2

3 (26)

Here the three pre-exponential factors and the three energies
are given by A1 = 2f 0C1e

−iL/kTe, A2 = eL/kTe, A3 = e−iL/kTe, E1 = Ea

− i(L − 2d0dσ), E2 = L − 2d0dhσh/(i + 1), and E3 = iL −
2d0dhσh. Similar to eq 22, eq 26 is applicable when the β-strands
are in the same extended conformation in the whole
temperature range investigated. This is so, because then all
six parameters in eq 26 have practically T-independent values.
Equations 19−21 and 24−26 are central results in the

present study. Inspection of eqs 24−26 reveals that at i = 0 they
describe rather accurately the metanucleation rate from eq
19−21, respectively (the metanucleation rate is overestimated
only by a factor of about 2 if ψh > 1, a condition expected to be
satisfied by amyloid proteins). This is important because of
making it possible to employ eq 25 for analysis of experimental
J(C1) data even without knowing the i value of the
concentration range investigated. Upon fitting the data by the
J(C1) dependence from eq 25 at fixed i = 0, 1, 2, etc., from the
best of all fits the value of i could be obtained and, thereby, the
thickness of the fibril nuclei (and prenuclei) determined. The
expectation is that in most cases either i = 0 (metanucleation)
or i = 1 (rapid nucleation) would provide the best fit, because
when i ≥ 2, J would be too low for the nucleation process to be
detectable.

■ DISCUSSION
Comparison with Computer Experiment. In a recent

paper,17 we have reported kinetic Monte Carlo simulation data
for the s dependence of the J/f1C1 ratio. The simulation code is
described there, and here we only note that in the simulations
we determined the probability P2 of dimer (1β-sheet of two β-
strands) growing into a macroscale fibril. We thus directly
obtained J in units of f1C1, since J and P2 are related by the exact
formula24 J = f1C1P2. The so-obtained data for J are ideal for a
most stringent verification of eqs 19 and 24, because in the
computer experiment the supersaturation s and the energies ψ
and ψh are precisely known and these equations contain no free
parameters.
The symbols in Figure 5 exhibit the simulation data17 which

were obtained at fixed ψh = 1 and at ψ = 5, 8, 10, and 14 (as

indicated), the ψ values being great enough to be relevant for
amyloid fibrils. The lines in Figure 5 display the J/f1C1 ratio
from eqs 19 and 24 at i = 1 or 2 and the above ψ and ψh values.
As seen in the figure, the theoretical and the simulation
nucleation rates are in a remarkably good agreement, especially
in the metanucleation range (i = 0, s > 2) and in the rapid-
nucleation range (then i = 1, 1 < s < 2, and both the prenuclei
and the nuclei are 1β-sheet-thick).

Figure 5. Dependence of the fibril nucleation rate J on the
supersaturation s at ψh = 1 and ψ = 5, 8, 10, and 14 (as indicated):
symbols, kinetic Monte Carlo simulation data;17 line in area i = 0, eq
19; lines in areas i = 1 and i = 2, eq 24 at i = 1 and 2, respectively.
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The conformity between theory and computer experiment at
ψ = 10 is illustrated again in Figure 6 which, however, visualizes

the strong discrepancy between the J(s) dependence from the
simulation and from both CNT and the corrected CNT
(CCNT) (eqs 27 and 28 in ref 15), a discrepancy which
persists for the other ψ values used in the simulation.17 As
CCNT and the atomistic nucleation theory (ANT) are in good
agreement (see Figure 5 in ref 16), this discrepancy implies that
ANT cannot describe the simulation J(s) data either. Neither
can this be done by other theories proposing the formula J =
aC1

b, because as already pointed out, this formula predicts a
concave or linear increase of ln J with ln C1 and, hence, s.
Figure 6 shows also that CNT and CCNT only provide,

respectively, upper and lower limits of the simulation J(s)
dependence. While CNT overestimates J because of disregard-
ing the big work needed for sidewise attachment of a monomer
to an iβ-sheet, CCNT accounts for this work, but under-
estimates J by considering the transition length mt as fixed and
thereby ignoring the fact that not only the iβ-sheets of this fixed
length, but also the iβ-sheets of all other lengths act as
prenuclei. Interestingly, the simple approximate formula (i = 0,
1, 2, ...; 2/(i + 1) < s/ψh < 2/i)

= + ψ−J i f C( 1) ei s
1 1

( 2 )
(27)

describes qualitatively the steplike course of the simulation J(s)
dependences in Figure 5, and even provides a rough estimate of
the magnitude of the jumps in J as well as of the J values at
supersaturations far enough from the borders of the successive s
ranges. This is seen in Figure 6 where the dashed line illustrates
eq 27 at ψ = 10 and i = 0 or 1. This equation follows from eq 24
upon neglecting the terms 1 − e[2ψh/(i+1)]−s and (1 − eis−2ψh)2

which account, respectively, for the vanishing net number of
monomers attaching to the nucleus at s approaching the left
end 2ψh/(i + 1) of the ith s range and for the sharp rise of the
concentration of nuclei at s tending to the right end 2ψh/i of
this range. As to the factor i + 1 in eq 27, it is introduced to take
into account that the (iβ + 1)-shaped nucleus has i more
attachment sites at one of its ends than the single β-strand (cf.
panels a and c of Figure 4).
Recalling that f1 = 2keC1/Ce when C1 is changed at fixed T

and that f1 = f 0e
−Ea/kT when T is changed at fixed C1, upon using

eqs 3, 21, and 27 we find that the dependence of J on C1 at
fixed T and on T at fixed C1 is approximately given by (i = 0, 1,
2, ...; Cee

2ψh/(i+1) < C1 < Cee
2ψh/i)

=J aC b
1 (28)

in the former case and by (i = 0, 1, 2,...; Te − 2d0dhσhTe/iL < T
< Te − 2d0dhσhTe/(i + 1)L)

= −J Ae E kT/1 (29)

in the latter case. The factors a and A, the power b, and the
activation energy E1 in these equations are given by a = 2(i + 1)
kee

−2iψ/Ce
i+1, b = i + 2, A = (i + 1)f 0C1e

−iL/kTe and E1 = Ea − i(L
− 2d0dσ). Importantly, eq 28 reveals the physical meaning of
the parameters a and b in the formula J = aC1

b already discussed.
The equation says that this formula is applicable only
approximately, besides with different a and b values in
successive C1 ranges. It shows as well that rather than
determined by the nucleus size n* (which is impossible merely
because the n* value is not a unique), the power b is controlled
solely by the number i of β-sheets constituting the nucleus, i.e.,
by the nucleus thickness. As amyloid fibrils are most likely to
form mainly in metanucleation (i = 0) and rapid-nucleation (i =
1) regimes, based on eq 28, we can expect the most often
encountered values of the power b to be 2 and 3 or, perhaps,
about twice greater because of the approximate character of eq
28 (cf. the solid and dashed lines in Figure 6). This expectation
is supported by b values inferred from experimental data for the
kinetics of amyloid fibrillation (e.g., Table 1 in ref 25).

Application to Aβ40 Fibril Nucleation. The successful
description of the simulation J(s) data by eqs 19 and 24 is
gratifying and makes it meaningful to employ eqs 20 and 25 for
predicting the J(C1) dependence in stationary homogeneous
nucleation of wild-type Aβ40 protein at T = 310 K, a
dependence not yet available from experiments. Using ke =
10−4 s−1 (ref 15), Ce = 4.8 × 1020 m−3 (=0.8 μM) (ref 26), and
the already mentioned ψ = 21 and ψh = 1.5, from the formulas
for the constants A1 and A2 in eq 20 we obtain A1 = 4.167 ×
10−25 m3 s−1 and A2 = 9.641 × 1021 m−3. With the same
parameter values, at i = 1, for the constants A1, A2, and A3 in eq
25 we find A1 = 9.982 × 10−64 m6 s−1, A2 = 2.151 × 1021 m−3,
and A3 = 1.037 × 10−22 m3.
Lines MN and RN in Figure 7 display the metanucleation

and rapid-nucleation (i = 1) rates obtained from eqs 20 and 25,
respectively, with the above two sets of constants. We observe
that in a rather narrow concentration interval from about 10 to
20 μM J increases nearly 16 orders of magnitude. The

Figure 6. Dependence of the fibril nucleation rate J on the
supersaturation s at ψh = 1 and ψ = 10: symbols, kinetic Monte
Carlo simulation data;17 solid line in area i = 0, eq 19; solid line in area
i = 1, eq 24 at i = 1; lines CNT and CCNT, eqs 27 and 28 of ref 15;
dashed line, eq 27 at i = 0 and 1.

Figure 7. Theoretically predicted dependence of the Aβ40 fibril
nucleation rate on the protein concentration at T = 310 K: solid line
MN, eq 20 at i = 0; solid line RN, eq 25 at i = 1; dashed line, eq 28 at i
= 0 and 1; dotted lines, selected values of the nucleation rate. The
threshold concentration C1β is the border between fibril rapid
nucleation and metanucleation.
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spectacularly sharp rise of J occurs at the nucleation/
metanucleation border

= =β
ψ σC C e C ee e

d d kT
1

2 2 /h h h0
(30)

of 16 μM. Thus, C1β from this equation (which follows from eq
1 at i = 1) appears as a threshold concentration, below which
the Aβ40 fibrils can be nucleated within a day solely in volumes
of 1 mm3 or larger, used for in vitro protein fibrillation. In
volumes of about 1 μm3 or smaller, as those of biological cells,
the fibril nucleation is arrested for days and even years when C1
< C1β (see Figure 7), and the Aβ40 fibrils can only come into
being by metanucleation at C1 > C1β when the fibril nuclei are
single β-strands. We note as well that the Aβ40 nucleation rate
in the rapid-nucleation range (i = 1) is more than 10 orders of
magnitude higher than that in the next nucleation range (i = 2),
which is why the latter is not displayed in Figure 7. In general,
therefore, amyloid fibril nucleation at i = 2, 3, etc. (i.e., with 2β-
sheets, 3β-sheets, etc., as prenuclei), can hardly be of
significance when ψ > 10. As to the approximate eq 28, in
Figure 7 it is illustrated by the dashed line drawn with a = 4.167
× 10−25 m3 s−1 and b = 2 when i = 0 (metanucleation) and with
a = 9.982 × 10−64 m6 s−1 and b = 3 when i = 1 (rapid
nucleation), values calculated from the formulas for these two
parameters with the values of ke, Ce, and ψ given above. We see
that eq 28 can be used for approximating simply, but not very
accurately, the J(C1) dependence and for estimating, albeit
roughly, the magnitude of the sharp jump of J at the
metanucleation/rapid-nucleation border.
The dramatic difference in the values of the rapid-nucleation

and metanucleation rates suggests that the threshold concen-
tration C1β is a crucial parameter in controlling the formation of
amyloid fibrils both in vivo and in vitro. If the protein solution is
to contain fibrils, C1β should be as small as possible. Vice versa,
for the solution to be practically fibril-free, C1β has to be as large
as possible. Equation 30 shows that for therapeutic or
technological purposes C1β can be tuned by changing the
protein solubility Ce, the β-strand length d0 (i.e., the β-sheet
width), the distance dh occupied by a β-strand along a β-sheet,
and/or the hydrophobicity-mediated specific surface energy σh
of the β-sheet sides. For example, σh can be diminished by the
presence in the solution of substances adsorbing on the β-sheet
sides. Then C1β decreases exponentially with σh and the protein
fibrillation is stimulated, because metanucleation commences at
smaller C1 values. As to Ce, it can increase, e.g., owing to protein
point-mutations.27 Then C1β increases proportionally to Ce and
fibrillation is hampered, because metanucleation is shifted to
higher protein concentrations. This result is consistent with
experiments on protein fibrillation kinetics,28 which reveal that
the lag time before detectable fibrillation is longer for two Aβ40
mutants than for the wild-type Aβ40, and that one Aβ40 mutant
is not detectable at all. By affecting the Ce and σh values and,
thereby, the threshold concentration C1β, the solution pH can
also be a significant factor in the fibril nucleation process.
Final Remarks. We emphasize that all results obtained

above apply only when the fibril nucleation occurs in one step,
i.e., when the monomeric protein polymerizes directly into
fibrils. They are not applicable to the case of two-step fibril
nucleation in which the monomers first aggregate into
nonfibrillar oligomers that then convert into fibrils.29 The
operativeness of these two nucleation mechanisms depends on
both thermodynamics and kinetics,21 and experimentally, it
may not be easy to distinguish them.

Another important point to make is about the analysis of
experimental J(s) data for one-step fibril nucleation at fixed T.

In standard nucleation theory,12,13 J is of the form J = Ae−w*

and as for condensed phases the factor A increases
approximately proportionally to es, due to the nucleation
theorem, the relation n* ≈ d(ln J)/ds − 1 holds.13,22,23 This
means that for such phases the slope of an experimental ln J
versus s dependence gives directly the nucleus size n*. Amyloid
fibril nucleation, however, is a very peculiar, nonstandard kind
of nucleation in the sense that, as already noted, the fibril
nucleus does not have a unique length and, thereby, size. For
that reason, no information about the nucleus size in one-step
amyloid fibril nucleation can be obtained from the slope of an
experimental ln J versus s dependence. Mathematically, this is
obvious from eqs 8 and 24 which show that the J(s)
dependence for amyloid fibrils is not of the standard form J

= Ae−w*.
Finally, we note again that our analysis treats only the

homogeneous nucleation of amyloid fibrils, which can occur
when the protein solution is sufficiently highly supersaturated
or when the solution container has walls whose surfaces are
nucleation-inactive or when nucleation-active foreign nano-
and/or microparticles are absent from the solution. When such
particles are present in the solution, however, as convincingly
shown in recent studies on human β2-microglobulin
fibrillation,30,31 heterogeneous nucleation on the particle
surfaces can take place. Hence, as preparing sufficiently pure
solutions and solution containers with nucleation-inactive
surfaces is rather difficult, heterogeneous nucleation is very
likely to occur in practice. Nonetheless, a clear understanding
and description of the homogeneous amyloid fibril nucleation
remains an important problem per se for at least two reasons:
(i) albeit with a considerable effort, the conditions (sufficiently
high purity or supersaturation of the solution) can be realized
for the occurrence of this process in experiments, and (ii) the
knowledge about this process is of great value, because it
provides a solid basis for theoretical treatment of the
heterogeneous nucleation of amyloid fibrils.

■ CONCLUSION
Summing up, we can conclude that, despite the peculiarity of
the one-step homogeneous nucleation of amyloid fibrils, the
stationary rate J of the process depends in a rather simple way
on the supersaturation s. The general J(s) dependence in
successive s ranges is given by eqs 19 and 24 according to which
of practical importance are solely the rates in the
metanucleation and the rapid-nucleation ranges (then the
nucleus is, respectively, any single β-strand or any single β-sheet
with one β-strand attached sidewise). The metanucleation rate
is many orders of magnitude higher than that in the rapid-
nucleation range. The crossover between these two rates is at
the threshold monomer concentration C1β which, as seen from
eq 30, can be manipulated by changing the protein solubility Ce,
the β-strand geometrical parameters d0 and dh, and/or the
specific surface energy σh of the β-sheet sides. This finding
might prove valuable in designing new therapeutic and/or
technological strategies for stymying or stimulating amyloid
fibril formation.
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